核融合エネルギー基礎論

エネルギー科学研究科エネルギー変換科学専攻

た進エオルギー評価 地球環境学者・リスキーに呼吸する

未来エネルギーシステム技術とメタ評価

一革新エネルギー、核融合、地球環境、水素社会 その技術と経済、社会への適合 -

6:安全性と環境影響と社会(1)

2021. 前期 月曜 4限 web配信

(15:00-16:30) 5/24

京都大学エネルギー理工学研究所・エネルギー科学研究科 小西哲之・八木重郎

内容

1. 未来のエネルギーと環境

- ① エネルギー問題
- ② 地球環境問題
- ③ 未来エネルギーの考え方
- 4 なぜ核融合を研究するのか?
 - ⑤ メタ評価とは何か?

2. 核融合入門

- ① 原理と特徴
- ② 開発の現状

4. 核融合工学

- ① 基本的な工学
- ② 核融合炉の構成機器
- ③ 工学研究の現状
- ④ 技術課題とトピック

5. 安全性

- ① 安全性の考え方
- ② 動力プラント安全
- ③ 廃棄物と材料
- 4 トリチウム、環境、生物

3. 核融合エネルギー変換と炉設計

- 1 トカマク炉設計
- 2 エネルギープラント

Physics Today, vol.55, No.4 (2002)

内容2

6. 先進エネルギー変換

- ① サプライチェーン
 - 2 核融合ブランケット工学

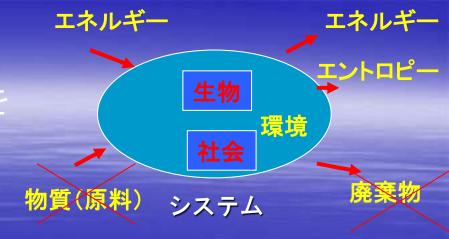
7. 未来エネルギーと水素

- (1) 未来型エネルギーシステム
- ② 水素製造と利用
- ③ 二酸化炭素排出とCCS

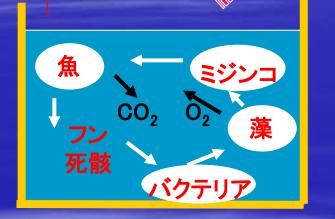
8. 核エネルギーの利用

- ① 核融合と核分裂
- ② 核エネルギーによる水素製造
- ③ 水素製造とエネルギー源
- 4 エネルギーと水素社会

9. エネルギー研究と社会


- ① 研究開発と社会
- ② 経済効果と市場性
- ③ 外部性の概念
- ④ 知的財産権と起業

10. 未来エネルギーと人類社会


- 1 エネルギー開発戦略
- ② 未来のエネルギー市場
- ③ 環境対策とエネルギー
- ④ 社会への適合
- ⑤ 人類の持続可能性問題

前回の課題 1

- 1. 水槽に、藻、ミジンコ、魚がいる。
- ー安定にシステムが機能する状態を 記述せよ。 ---

代表的な回答

(1)エネルギーバランス

- ・エネルギーの入口:光
- ・エネルギーの出口:熱

エネルギーの質が違っている。

エントロピーはどこで捨てている?

生物はエネルギーを「変換」している。

安定なシステム:エネルギーバランスが取れている

=入るエネルギーと出るエネルギーが同じ

=エネルギー保存則(熱力第1法則)

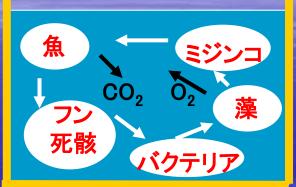
でもこれだけではシステムは「動かない」

→「仕事」をするシステムはエントロピーを捨てる。(第2法則)

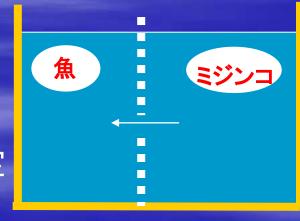
前回との違い:「持続可能性」

(2)物質バランス

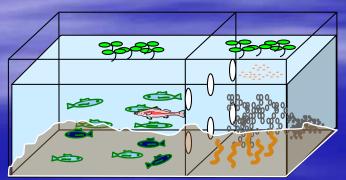
- 一この場合は循環:物質収支はない
- 分解者(バクテリア)の介在:
 - •分解者がいれば「合成者」がいる
 - 一合成するときにエネルギーを使い、エントロピーをすてる

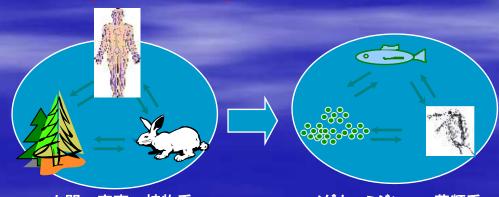

安定なシステム:物質バランスが取れている 廃棄物と原料は相対的なもの。 しかし廃棄物はよりエントロピーを持っている。

(3)個体数、社会システム


- ・個体数ピラミッド:食物連鎖
- ・個体数の安定性:すべての個体数がほぼ一定
 - 資源制約一みんな空腹

ーどうやって?ー個体数を制御する「システム」:社会? 安定なシステム – 「持続可能



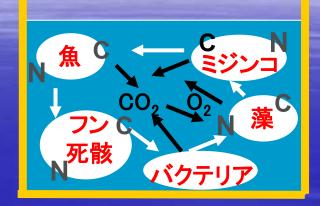

物質循環

人間一家畜一植物系

メダカーミジンコー藻類系

放射線医学総合研究所の提供による。

(4)物質バランスについての更なる考察


- 一たとえば、元素ごとにリサイクルを見ると かなり挙動がちが**う**。
 - ・酸素:呼吸と光合成の間で循環
 - ・炭素:化学エネルギー媒体として、 食物連鎖を循環
 - ・窒素:タンパク質源として循環
 - ー実は多くの場合これが資源 制約。(←肥料?)
 - 他にも、ミネラルなど制約になるものが ありうる。

(5)エネルギー制約

エネルギー供給量、利用量が変わると どうなるか?

「持続可能な」システムの作り方を考えてみよう。

各元素の循環

このサイクルをまわして いるのがエネルギー

より多くを生かすには?

「環境」を生物と対置してはいけない。

- 一人間は環境を破壊しているわけではない
- 一生物が環境に適応するのが進化ではない

「生物」は自分の棲む「環境」をつくる ーそれが自分に適しているとは限らない

- 。。たまたま「環境」と「生物」が適応したとき「持続可能」(定常状態)となる。
 - 一人類はその状態に達していない

得られる教訓のいくつか

- O)ともかく、与えられた<u>資源、時間内でそれなりの答えを出せ!</u>
- 1)問題に対する解答は1種類とは限らない。
 - 一さまざまなアプローチがある。
 - 一理系的方法が記述、説明に優れているとは限らない。
 - 一記述、理解、分析、など、目的により最適の方法は異なる。式が解けても意味がわからないと本質を取り違える。式がなくても本質は理解できる(が定量性はない。)グラフは変化の理解と説明には有効。
- 2)エネルギー、資源と環境の問題は案外単純な構造を持つ。 (資源制約、環境制約は言葉だけ知っててもだめです)
 - 一問題の理解にはアナロジーが有効。
 - ーただし、過度な単純化、問題のすりかえに注意。 (自然界はそこそこ単純には描けるが。)
- 3)本当の問題は、このあとにある。。。

経済成長、エネルギー、人口

Institute of Advanced Energy, Kyoto U

エネルギー供給自体が人口を増加させてきた。 それがエネルギー需要を作る。→自己撞着 産業革命以来、持続可能性を超えた成長が続いてきた。 安定解の必要条件は人口一定。→エネルギー=善ではない このとき経済成長は?→持続可能な「発展」は未解決

前回の課題2

- (1) エネルギーの利用法のうち、
 - 電気でできるが、燃料ではできないもの
 - 燃料ではできるが、電気でできないもの

の例を考えてみよう。

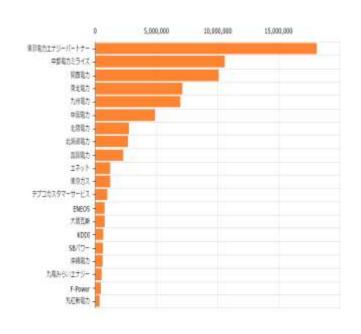
原理的にやれないことはないが効率が悪い、という場合、その効率を制限している原理と限界も、示してください

- (2) 電力会社とガス会社。(君たちも就職希望を持っている?)
 - ・電力会社がガス会社の、ガス会社が電力会社の、シェアを奪うことがあるだろうか?実例を考えてみよう。
 - 電気会社がガス会社の、ガス会社が電力会社の、客になる例もあるかな?

- (1) 電気でできるが、燃料ではできないもの 冷蔵庫?エアコン?TV…できるよ。発電機でも。直接駆動も。 加速器、レーザー、核融合:一瞬で大パワー、これできない。
- 燃料ではできるが、電気でできないもの 車を動かす?もうハイブリッド化してるし。飛行機や船は さすがにムリ?大量にためること、運ぶこと。これできない。

原理的にやれないことはない制限:

大量にためる・持ち運ぶvs. 一瞬で(制御して) 使う


- →つまりロジスティックスの差なのです。(瞬発力vs持久力) 電気は、速度は速い(光速)。ワットで大きい。でも」は?
- (2)電力会社とガス会社。
 - オール電化だけじゃない。その電気を、ガス会社が作る。エネファームとか。電気会社はガスの小売りもします。
 - 電気会社とガス会社は、実はすでに電気もガスもお互い 売ったり買ったりしています。 行きつく先は? これが、「電力自由化」
 - でも、いま現実化してるのは「カスタマーサービス」。

今、電力小売り業者は721社(2021年5月現在) 大手のガス会社、石油会社、電話会社はすべて売っている。

2017年、ガス小売りも自由化。 事業者には電力会社が名を 連ねている。(登録順に、関電、 東電、中電、九電。。エネ庁登録 事業者一覧より)

要するに、誰がエネルギーを届けてお金をもらうかの問題。

もう電気もガスも区別がない。 (ロジスティックス商売) でも<u>作るところばかり考えてた</u> らこの問題はわからない! まして、実際売ってる会社はほ とんどが作ってない!

2021/01における実績値。CO2排出量は事業者全体における張整後排出係数(令刑1年度実績値)

https://pps-net.org/ppscompany?ppskey-pps195

前回の課題3

エネルギーは、何に使っている?

(1)「使い方」=利用されているエネルギーの形を、3種類あげてください。 実は、エネルギーの種類は、そんなに多くない。

(2) また、君が使った例を、「単位をつけて」どれくらい使ったか、 書いてください。

普通、エネルギー使っても、あまり気にしてないですよね。。

「電気」じゃないです!

今回多かった答えだけど、「電気」では答えになりません。 確かに、ガソリンなんかと違って、エネルギーそのものなんだけどね。 君たち、電気を食べるわけでも、直接それでなんかやるわけじゃない だろ?

モーター回したり、 電球つけたり、 お湯沸かしたり、 パソコン使ったり、 テレビ見たり。。。

電気は、そのままでなく、何か別のエネルギーに変えて 使ってる。 その「何か」を書いてほしかったわけ。

前回の課題O

エネルギーは、何に使っている?

- (1)「使い方」=利用されているエネルギーの形を、3種類あげてください。
 - <u>• 仕事</u>(単位J=ジュール)
 - 熱(単位J=ジュール)
 - ・光(単位cd=カンデラ): これがSI基本単位

定義:周波数540×10¹²Hzの単色放射を放出し、所定の方向におけるその放射強度が(1/683)W/sr(ワット毎ステラジアン)である光源の、その方向における光度

不便ですねー。ジュールは、kg m² s² という単位です。 ちなみに、SI基本単位は、アンペア(A), カンデラ(cd)、ケルビン (K), キログラム(kg)、メートル(m)、秒(s)、モル(mol)。

化学エネルギーってあげてくれた人がいますけど、これは一応、熱。 ただし、「潜熱」ですね。

音も、一応、空気に対する仕事だとみなせる。最後は熱になる。 仕事、熱、光。これ以外の使い方は、まずないです。 (2) また、君が使った例を、「単位をつけて」どれくらい使ったか、 書いてください。

これには、もちろん正解はないです。

答え方はいろいろあるけど、エネルギーを、使った量で単位をつけて答えるのは結構むずかしいことがある。

—帰宅するとき、エレベータでマンションの7階に上がった。 君の体重が70kg、高さが30m。これなら答えられる。 70kgw x 30m=70 kgw x 9.8 m/s² x 30 m = 20 x 10³ kgNm(=J) ところが、下宿に帰るのに10km移動した、とかだと?できん。

鍋でお湯を1リットルわかした、だったら簡単。(3 x 10⁵ J) ところが、シチューを一時間かけて煮込んだ、だと?できん。

こんな時、使ったガソリンやガス、電気の量だと計量できる。 一人平均、0.5GJ使ったことになってるんだが?

前回の課題O (おまけ―わかる人、興味のある人のために)

ところが。<mark>仕事、熱、光</mark>の他に、実はもう一つ、エネルギ**ーの使** い方があります。

それは、「青報。これあげてくれた人、さすがにいなかったな。 (携帯とかスマホとかPC書いた人はいっぱいいるのに??)

巨大計算をするスパコン。膨大な電力を使って全部熱にしてしまうけど、何を作り出しているか、というと、エネルギーを情報に変換してる。単位は、エントロピーと同じ、熱で測れる。確率の対数。

統計力学上、「マクスウェルの悪魔」として知られる。

最近、ビットコインの採掘でも知られてる。

実は、君たちの持ってるゲーム内コイン(通貨)もすべてこれ。

よく見ると、鉱業における精錬とか、化学工業における分離操作 (蒸留、海水淡水化、ろ過、分級、精製、同位体分離など)、冷却、冷 凍もこれに入る。「エントロピーを下げる」ためにエネルギーを使い、 もっとたくさんのエントロピーを捨てる。熱力学第二法則にしたがう。

今まで、持続可能性や生物の働きのところで書いていたのがこれ。

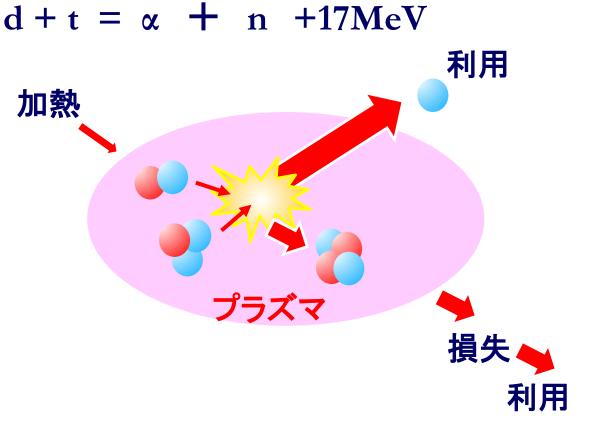
価値=情報=低確率=負のエントロピー

人類が掘り出した金の総量は(たったの) プール2杯分!

カラのCDと名曲の入ったCD。 タダの紙屑と、文学作品。

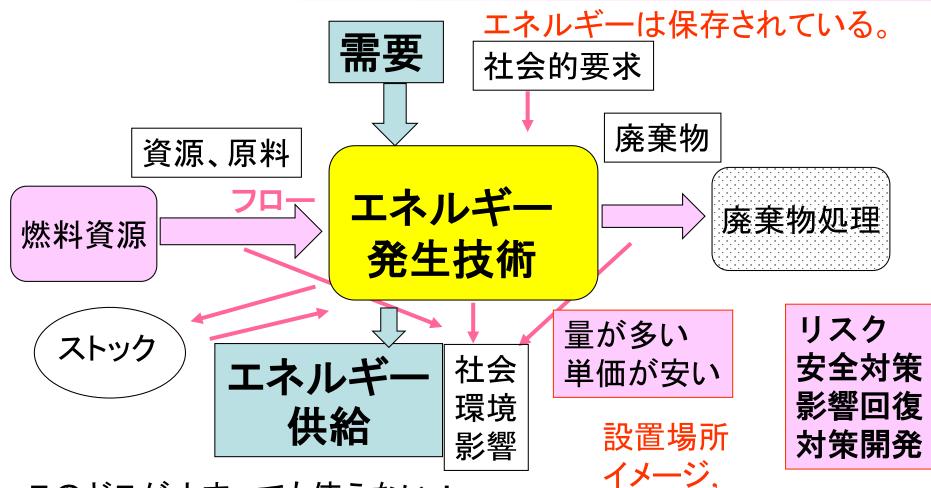
ビットコイン。ゲーム内通貨。

やがて、「価値」「経済成長」は、モノから完全に離れ、


「エネルギーの次元で測る情報」になるだろう。

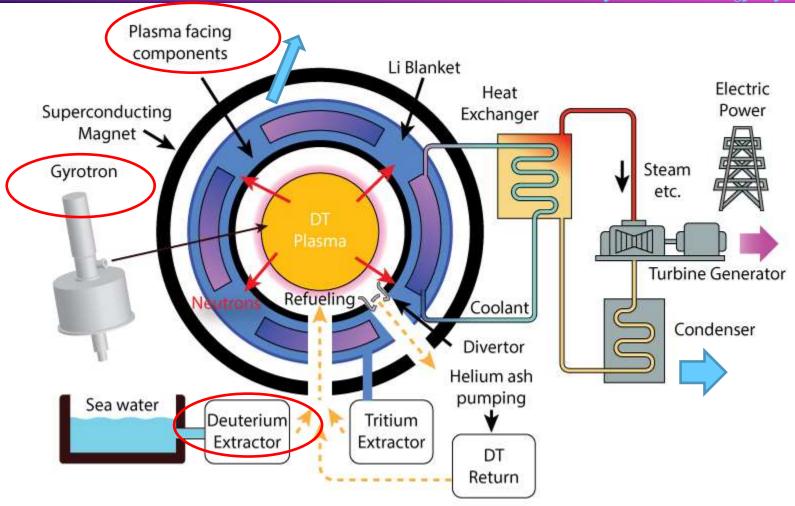
核融合反応で発生するエネルギー(復習)

Institute of Advanced Energy, Kyoto V


実は火を使うのと 変わらない

アルファ粒子はプラズマ中にとどまる 中性子の持つエネルギーを利用

エネルギーのサプライチェーン


このどこが止まっても使えない!

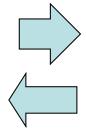
- →資源豊富/エミッションは制約になりうる **社会的受容**
- →物質によらない制約もある。(需要等)使えないものもある

核融合プラントは何をするのか?

電力を入れて、重水素とか、装置を時々入れて、 電力を出して、何を出してるかな??

核融合(エネルギー施設)はどうみられるか

サイト境界の中、バイオシールドの中はブラックボックス


廃棄物 (固体,揮発性 T,C-14)

排気•排水(T,heat)

(廃棄物からの放出)

核融合の評価は

- 何を消費し
- 何を排出し
- 何を生み出し、
- 何をもたらしたか

環境に出たもの その費用 その影響

で行われる

今日の課題1

猫とネズミはどっちが強い?

一草食動物しかいない島に肉食動物が漂着したら?生き残るのはどちらだろう?

古典的ダーウィニズムでは「強いほうが生き残る」?

草食動物

肉食動物

②食糧問題。大丈夫かな?

一人類の食料は、人口は爆発的に増えてるのに 今後も足りるのだろうか?

古典的マルサスの理論では、「人口は幾何級数的に増えるのに食料生産はそんなに増えない?

人類の人口は、食糧で制約されているのだろうか?

第2部

4. 核融合と安全性

イントロダクション

Institute of Advanced Energy, Kyoto University

今なぜ?どのように安全性を考える?

誤解を恐れずに言えば。。

すべてのエネルギーは人を殺す!

すべての科学技術は 人の死に方を増やしてきた。

エネルギーだけでなく。廃棄物も、原料も、事故もあるし。

安全性を考える?

1) 核融合プラントの「安全性」

- ・プラント全体としての最適化のために考察すべき要件の摘出
- 核融合は「安全」なのか?
- ーどのように「安全」を確保するか?
 - →安全上のメリットはどこにあるのか?どう説明するか?
 - →核融合の安全上の利点をどう生かすか?
 - ...つくってもいないものの安全性をなぜ考えるのか?
- 2) 環境適合性、社会適合性、経済性からみた核融合プラント
 - エネルギー取り出しと環境インパクト
 - 安全確保のロジック
 - ・開発目標の考え方
 - ・社会への説明

安全性って、なンだ?

■「リスク」が許容範囲であること

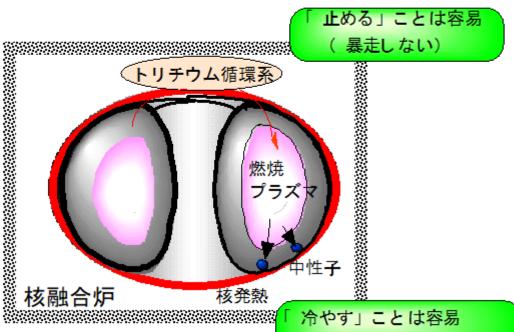
Institute of Sustainable Science

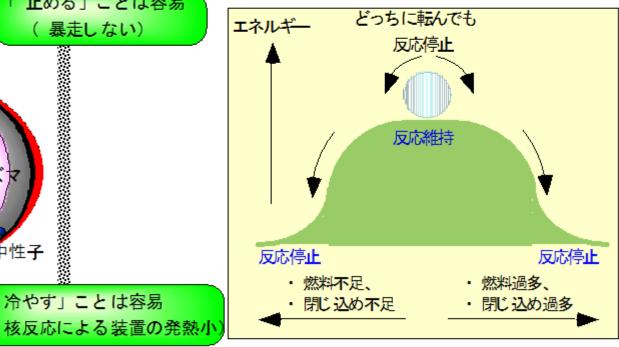
- →リスク=ハザードx確率く許容範囲(支払ってもよい対価)
 - ーベネフィットが大きければリスクは許される?
 - ーどんなに利益があっても許容できないリスクがある?
- リスクはどのように減らすか?
 - 一確率を減らす
 - 一被害(ハザード)を減らす
 - 一許容範囲を見直す?
 - ←そもそもリスクの認知は正しいのか? (ヒトは、コワいと思うものしか怖がらない) コワい、と思ったら、量に関係なく怖い。(文系概念)

本日の課題2

核融合1反応あたり17.6MeVのエネルギーが発生する。 一人当たり電力消費年間4000kwhとして、核融合燃料何gが

必要だろうか?

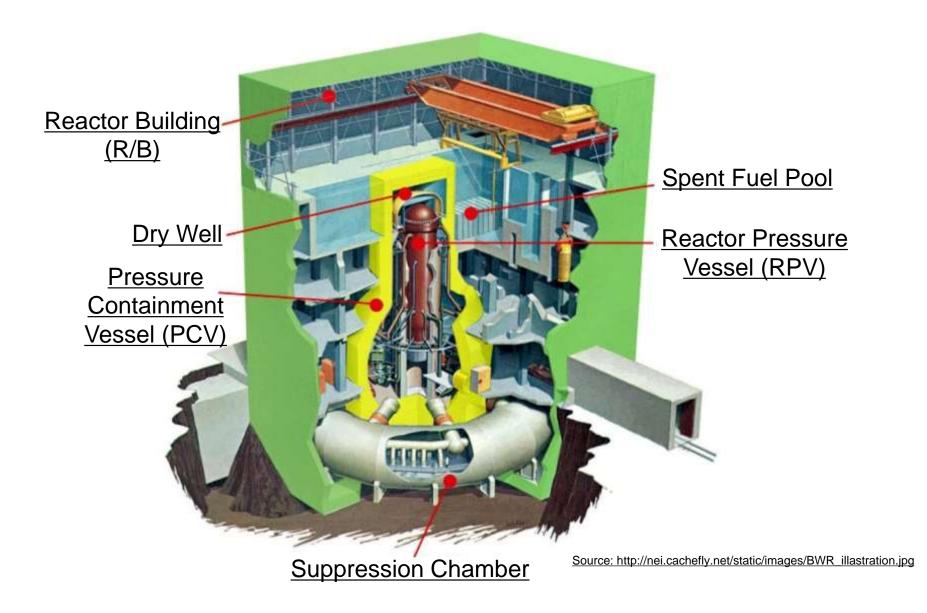

ただし、1eV=1.6x10⁻¹⁹J、D-2g/mol、T-3g/mol



核融合の安全性の基本

Institute of Advanced Energy, Kyoto University

炉内で放射性のガス(トリチウム)を使用


放射性物質の 閉じ込めが重要

放射性毒性(ハザードポテンシャル)は 分裂炉の1/数1000

崩壊熱の比較

	ITER 最終設計報告	PW R
熱出力	1500 M W	1900 MW
崩壊熱(運転停止直後)	20 M W	125 MW
最大崩壊熱密度	~05MW/m3	~5 MW/m3

Overview of Mark-I Type BWR (Fukushima Unit-1, 2, 3, 4 and 5)

核融合の安全上の特徴

Institute of Advanced Energy, Kyoto University

	ΠER	核融合炉	軽水炉
主要な放射性物質	トリチウム 潜在的影響は 研究炉程度	トリチウム 潜在的影響は 研究炉程度	核分裂生成物
放射性物質の 重要な存在領域	真空容器内壁 燃料処理系 ▲ つながりに	燃料処理系 ブランケット 真空容器内壁	燃料棒の中 A 密接
大きなエネルギー の存在領域	プラズマ ▼ 超伝導コイル	超伝導コイル ブランケット プラズマ	燃料棒の中
臨界(暴走)の 原理的可能性	無	無	有

反応の原理的な特徴 放射性物質の被ばく上のポテンシャル 放射性物質とエネルギーの関係 (将来はブランケットが重要)

確率論的安全論

Probabilistic Safety Analysis

- ■「リスク」が「確率」を中に持っているので、 どんなにハザードが大きくても確率を小さくすればいい (と考える)
 - 一「多重防護」「深層防護」をすればいくらでも 確率を下げられる
 - ー工学的に安全性信頼性を確保するには有効な方法論
 - 一安全性を「説明」するのに有効か? 対策として有効か?本当に事故を防げるか?
 - ←そもそも本当に正しいのか?

on President

では、リスクとは?

- 1) たとえば「ガンのリスク」
 - ガンが増えるというのはどういうことか?
 - どういうときにガンが増えるのか
 - 人は一回しか死なない
- 2) 許せるリスク、許せないリスク
 - リスクへの対応
 - ・保険と再保険
 - 対策と予防と緩和
 - ・受け入れ可能なリスク
 - ーそこまで法、規制が保証する
 - →つまり、すべての安全性は収斂する。
 - 地球温暖化問題
- →結局、すべてのリスクは、「命ではかる値段」になる?⁵⁵

本日の課題 3

- ①核融合プラズマの平均イオン密度 1x10²⁰ 個/m³ (要するに空間にある個数)、プラズマ体積を1000m³ とすると、炉内の燃料何gか?
- ②実はこの燃料は有害な物質です。これって怖い??? (感想を一怖いか怖くないか書いてください。理由も。) 定量的な表現は歓迎しますけど、ムリしなくてもいいよ。

核融合の安全性の特徴

Institute of Advanced Energy, Kyoto University

ハザードポテンシャル」が少ない

(事故の確率はともかく)潜在的危険の大きさが小さい 離隔距離が小さい一需要地近接立地に有利

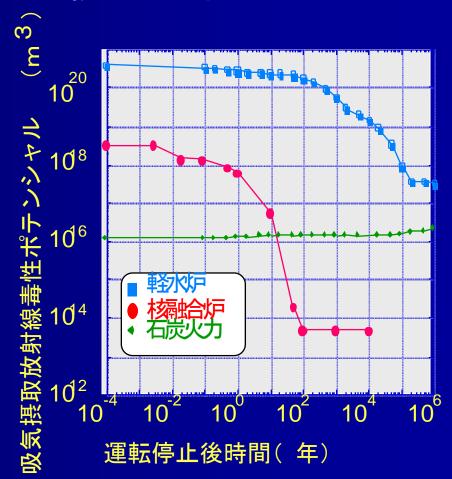
原子炉より安全という 訳ではない!

生物学的危険度(BHP):

放射能量

無害まで薄め

空気中最大許容濃度

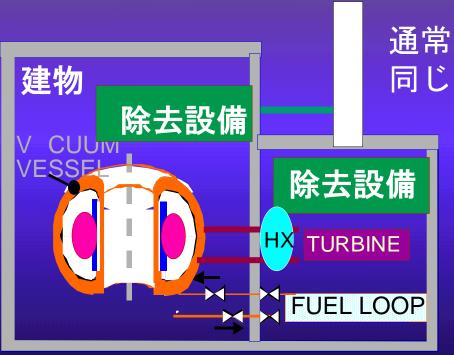

= るのに必要な 空気の量

主な核種:

核融合炉 ー トリチウム

軽水炉 一 核分裂生成物

石炭火力 ー トリウム、ウラン



放出源としての核融合プラント

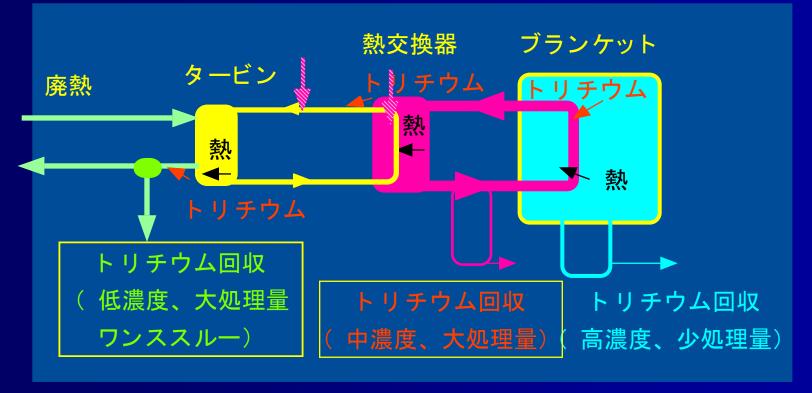
nstitute of Advanced Energy, Kyoto University

トリチウムは閉じ込め施設と除去設備 の組み合わせで制御される

通常時、異常時とも基本的対応は 同じ。(放出量が違うだけ)

動力炉では、熱交換器、発電プラントが加わる。

炉本体よりも、プラント全体がどれだけ有害物質を環境に 放出するかが本質

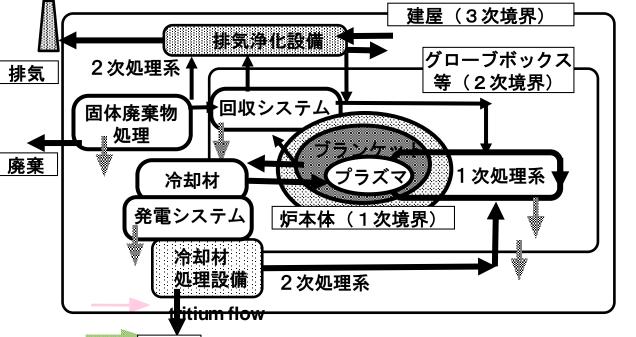


単純化したプラントシステム

Institute of Advanced Energy, Kyoto T

- 核融合は、形式を問わずブランケット系のトリチウム処理が 環境、周辺の安全の決めてとなる。
- 異常放出にも、常用システムで対応可能
- サイトに依存しない、型式での安全評価に可能性を開く。

模式化した安全システム

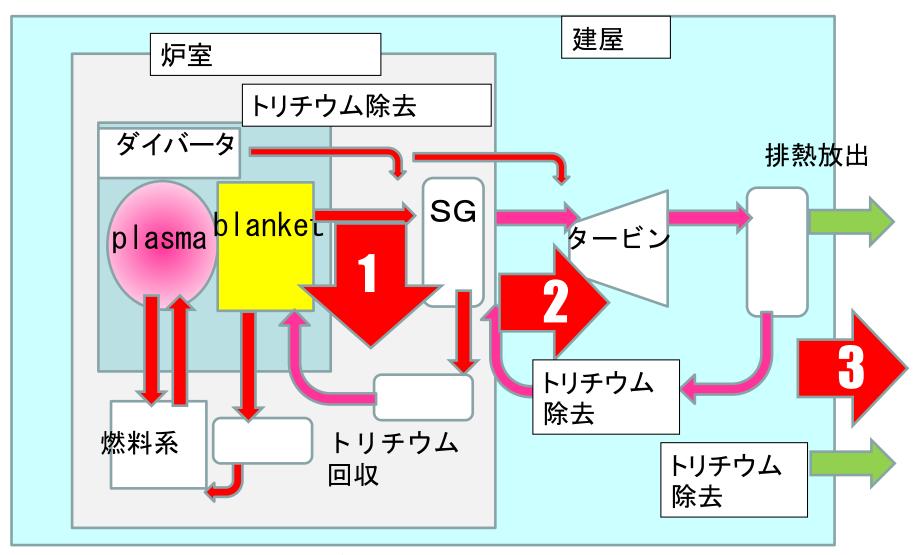


核融合施設の通常時放出

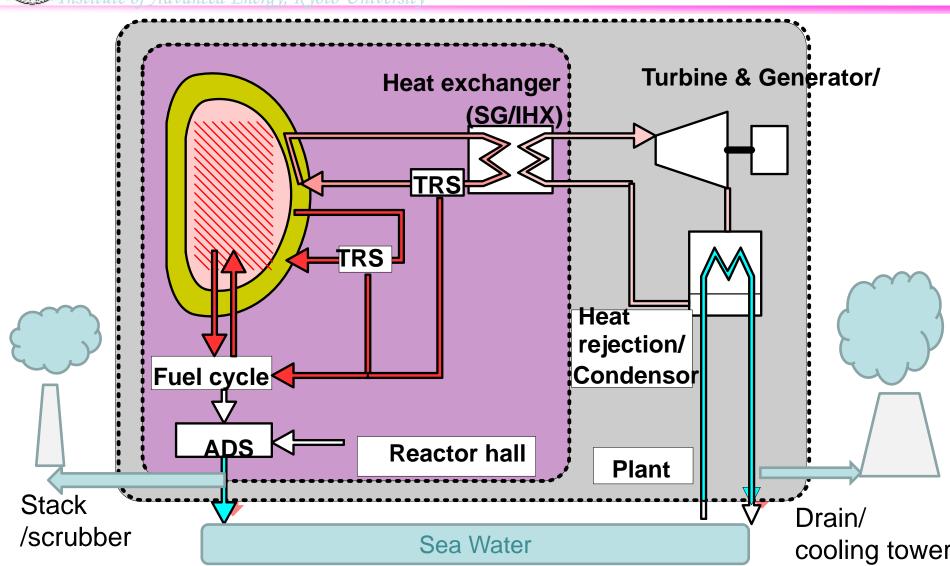
Institute of Advanced Energy, Kyoto University

- ・ 通常時放出は 材料のトリチウム透過→冷却材環境放出
- 安全システムの設計は、ブランケット材からのトリチウム 透過で決まる。
- 核融合では、施設の安全性は、炉心でなく、プラント安全 設備で確保する。一般化した動力プラント

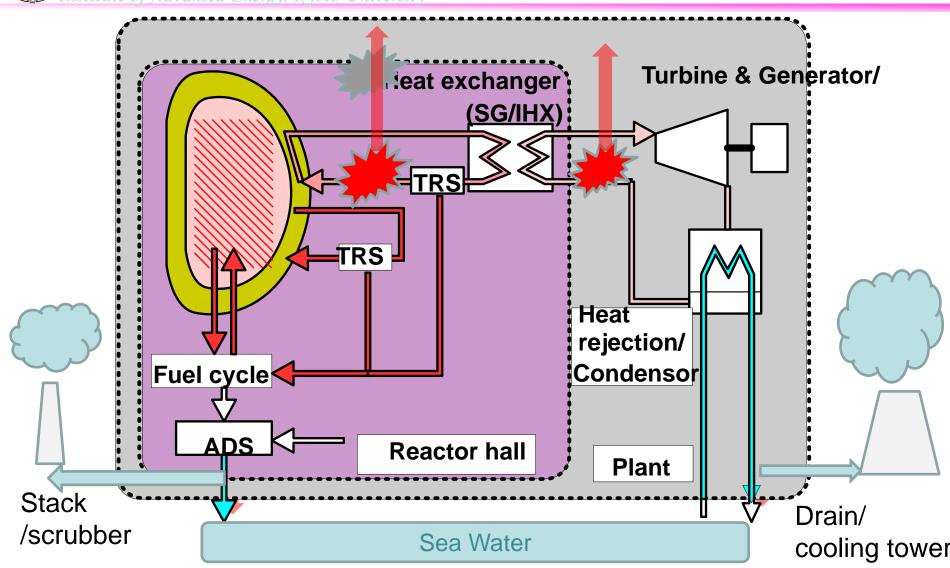
排水 Im leak/perm


	FRIMARY LOOP	COOLANTIFROESS
TRTIUMINAENTOEY (kg)	1	05
TRTIUMTI -R OUG-RUT(kg/day	30	05
TOTALTHROUGHRUT (kg/day)	60	50000

発電プラントのトリチウムシステム


Institute of Advanced Energy, Kyoto University

動力炉では、発電系が主なトリチウム放出源となる


通常時のトリチウム放出

Tritium migrates with heat. Blanket concepts have major impacts. Coolants, heat exchanger, energy conversion...

事故時のトリチウム放出

Tritium processing with equipment for normal operation.

核融合の廃棄物

- 〇廃棄物は、「施設から出た時」に問題になる。
- 〇社会が廃棄物に求める要求に応じて設計で最適化する
 - 一廃棄物の量を減らす:クリアランスを目標
 - 一保守交換:表面線量率、再利用
 - …他にも異なる要求がありうる:廃棄物の寿命、環境 放射能放出、リサイクルなど。 重量、体積、管理のしやすさ、コスト、危険性。。。
- 〇環境へのトリチウム、炭素14の放出が問題になりうる。
- 〇すべての物質の入手から行き先まで考える必要性がある。

核融合(原子力)施設による被曝

Institute of Advanced Energy, Kyoto University

異常時放出の対策

- 破損した機器から
- ・制限された内蔵量
- ・コンファインメント 施設

トリチウム拡散

排

気

を含む排気

自然放射線

事故時<5 mS v /事象

平常時目標値<0.1mSv/年

敷地

環境挙動

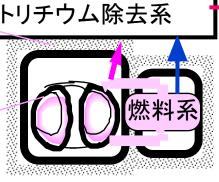
─約1 mS v /年

境界

土壌

農作物

被ばく影響


地下水

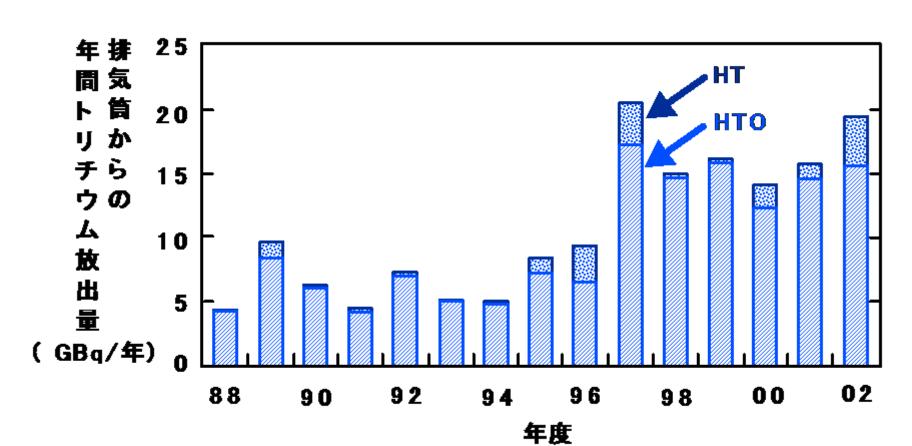
核融合施設

希釈

|子ウ /. 陉土玄

機器からの 漏えい

本体建屋


通常時放出の対策

- 漏えい、処理
- ・トリチウム除去装置(排気、排水)
- インターロック等

実在施設(原子力機構)のトリチウム放出記録

排気中濃度限度とTPL排風量から計算される最大許容放出量:

約 425 GBq/3ヶ月 (全量HTOとして) × 4 = 約 1,700 GBq/年

諸外国の主要トリチウム取扱施設

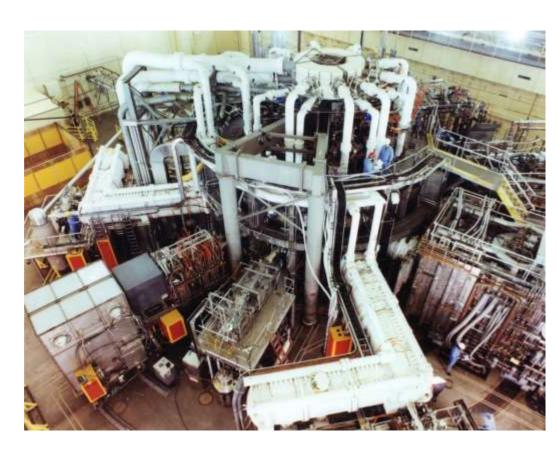
トカマク核融合試験炉(TFTR)

- 米プリンストンプラズマ物理研究所 -

1982 プラズマ実験開始

1993 D-Tプラズマ実験開始

1997 プラズマ実験終了

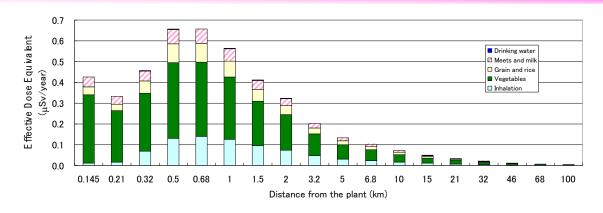

1999 除染・解体開始

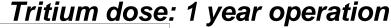
2002 除染-解体終了

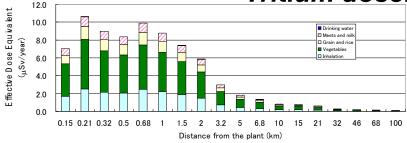
トリチウム関連諸量

サイト・インベントリー プラズマへの注入量 取扱処理総量 排気筒からの放出量 例年平均 最終年 最大 5 g 約 5 g 約 100 g

約4.7 TBq 約8.5 TBq

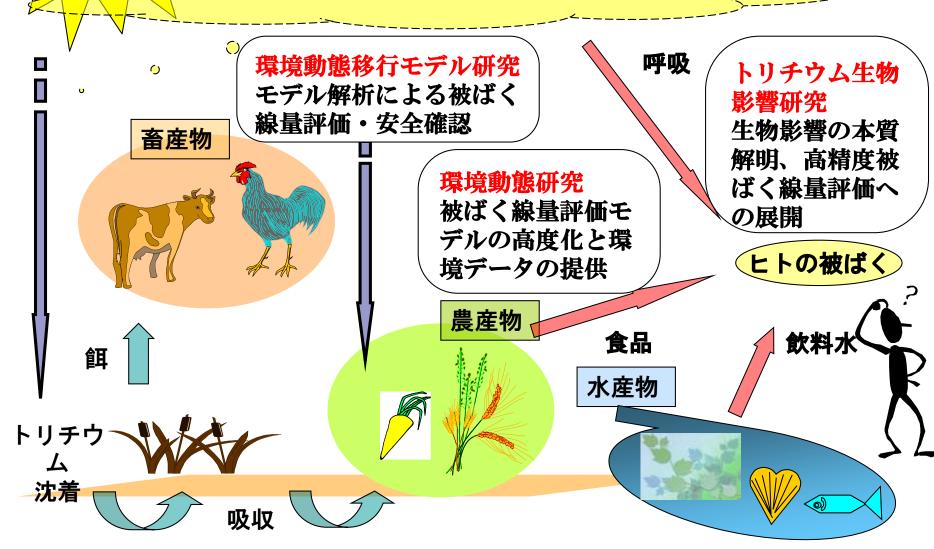





長期的な放出と環境影響

Institute of Advanced Energy, Kyoto University

Tritium dose: 100 years operation


- 100年後の年間被ばく量は大きく減少し、かつ飽和する・一基(1g)放出あたり 10 μSv/year 以下で大きな寄与はない.
- •初年度の 15 倍の被ばく量

生物・環境の核融合トリチウム研究

放医研、宫本

トリチウムプルーム HTO、HT

	トリチウム濃度 (Bq / L)	1年間飲み続けたと きの年間被曝線量 (mSv/年)
海水中のトリチウム濃度	0.1	1.0E-6
現在の降水中のトリチウム濃度	0.5	4.9E-6
人体を構成する水のトリチウム濃度	0.5	4.9E-6
ドイツの飲料水中のトリチウムの濃度限度	100	0.001
核実験当時の降水中のトリチウム濃度	110	0.0011
飲料水の連邦基準(USA)	740	0.007
トリチウム汚染水の排出目標(仮)	1,500	0.015
カナダの飲料水中のトリチウムの濃度限度	7,000	0.07
WHOの飲料水のガイドライン	10,000	0.10
フィンランドの飲料水中のトリチウムの濃度限度	30,000	0.30
管理区域からの排水基準	60,000	0.59
オーストラリアの飲料水中のトリチウムの濃度限度	76,103	0.75
下限濃度	1,000,000,000	9,855

*年間被曝線量の計算は、1日に1.5リットルの水を飲用するとして計算

核融合の安全性(専門家向)1

Institute of Advanced Energy, Kyoto University

施設の設置者、運営者は、アブなくないように作り、それをわ かるように周辺住民に説明しないといけない。

核融合プラントの安全性

- ・核融合プラントの安全性は、周辺住民の被曝防止の観点で確保す (原子力施設に共通の考え方)
- ・核融合の安全上の特長により、安全確保の方法が考慮される (従来の原子力施設と大きく異なる)

通常運転時のトリチウム

- ・いずれの方式でも、一次冷却材からのトリチウム抽出は不可避
- ・このトリチウム回収系がプラントのトリチウム回収系が 全プラントのトリチウム回収能力に匹敵する。
- ・間接サイクル、熱交換器、蒸気発生器はほとんど未知の技術。 トリチウム濃度低減のためにも必要。

安全性のまとめ(一般向)

Institute of Advanced Energy, Kyoto University

我々は、説明を理解したり、アブなかったら止めないといけないエネルギー源のリスク

- すべてのエネルギーはリスクを持っている
- リスクは、ライフサイクルで見なければならない
- リスクは、影響経路をすべて追わなければわからない

リスクと安全性

- ・ 社会的に許容できるだけのリスクに抑えること。
- すべてのリスクは同じレベルに収斂する。
- リスクは定量可能であるが、受け入れレベルが同じ 量を示すとは限らない

ーそもそも、説明されるリスクは 信用できるのか?